- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000001010000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Goyal, Yogesh (2)
-
Melzer, Madeline E (2)
-
Sun, Hanxiao (2)
-
Arun, Keerthana M (1)
-
Eriksson, Carl-Johan (1)
-
Fabian, Itai (1)
-
Haley, Benjamin (1)
-
Kiani, Karun (1)
-
Kumari, Nitu (1)
-
Kuznets-Speck, Benjamin (1)
-
Oren, Yaara (1)
-
Prashnani, Ekta (1)
-
Schwartz, Leon (1)
-
Shaashua, Sagi (1)
-
Vaikuntanathan, Suriyanarayanan (1)
-
Zhang, Ziyang (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Pooled single-cell perturbation screens represent powerful experimental platforms for functional genomics, yet interpreting these rich datasets for meaningful biological conclusions remains challenging. Most current methods fall at one of two extremes: either opaque deep learning models that obscure biological meaning, or simplified frameworks that treat genes as isolated units. As such, these approaches overlook a crucial insight: gene co-fluctuations in unperturbed cellular states can be harnessed to model perturbation responses. Here we present CIPHER (Covariance Inference for Perturbation and High-dimensional Expression Response), a framework leveraging linear response theory from statistical physics to predict transcriptome-wide perturbation outcomes using gene co-fluctuations in unperturbed cells. We validated CIPHER on synthetic regulatory networks before applying it to 11 large-scale single-cell perturbation datasets covering 4,234 perturbations and over 1.36M cells. CIPHER robustly recapitulated genome-wide responses to single and double perturbations by exploiting baseline gene covariance structure. Importantly, eliminating gene-gene covariances, while retaining gene-intrinsic variances, reduced model performance by 11-fold, demonstrating the rich information stored within baseline fluctuation structures. Moreover, gene-gene correlations transferred successfully across independent experiments of the same cell type, revealing stereotypic fluctuation structures. Furthermore, CIPHER outperformed conventional differential expression metrics in identifying true perturbations while providing uncertainty-aware effect size estimates through Bayesian inference. Finally, most genome-wide responses propagated through the covariance matrix along approximately three independent and global gene modules. CIPHER underscores the importance of theoretically-grounded models in capturing complex biological responses, highlighting fundamental design principles encoded in cellular fluctuation patterns.more » « lessFree, publicly-accessible full text available July 1, 2026
-
Zhang, Ziyang; Melzer, Madeline E; Arun, Keerthana M; Sun, Hanxiao; Eriksson, Carl-Johan; Fabian, Itai; Shaashua, Sagi; Kiani, Karun; Oren, Yaara; Goyal, Yogesh (, Cell Genomics)
An official website of the United States government
